

César Celis Pérez

ENTRADAS DE AR SUBMERSAS PARA AERONAVES: ESTUDO NUMÉRICO DA MELHORIA DE DESEMPENHO OBTIDA PELO USO DE GERADOR DE VÓRTICES

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Luís Fernando Figueira da Silva Co-orientador: Sandro Barros Ferreira

> Rio de Janeiro Fevereiro de 2006

César Celis Pérez

ENTRADAS DE AR SUBMERSAS PARA AERONAVES: ESTUDO NUMÉRICO DA MELHORIA DE DESEMPENHO OBTIDA PELO USO DE GERADOR DE VÓRTICES

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luís Fernando Figueira da Silva

Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Dr. Sandro Barros Ferreira

Co-orientador

Instituto de Energia da PUC-Rio - IEPUC

Prof^a. Angela Ourivio Nieckele

Departamento de Engenharia Mecânica - PUC-Rio

Dr. Guilherme Lara Oliveira

Empresa Brasileira de Aeronáutica S.A. - EMBRAER.

Dr. João Luiz F. Azevedo

Instituto de Aeronáutica e Espaço - Centro Técnico Aeroespacial - CTA.

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio.

Rio de Janeiro, 20 de fevereiro de 2006.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

César Celis Pérez

Graduou-se em Engenharia Mecânica na Universidad Nacional de Ingeniería (Lima, Peru) em 2002.

Ficha Catalográfica

Pérez, César Celis

Entradas de ar submersas para aeronaves: estudo numérico da melhoria de desempenho obtida pelo uso de gerador de vórtices / César Celis Pérez; orientador: Luís Fernando Figueira da Silva; co-orientador: Sandro Barros Ferreira. — Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2006.

168 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Tomadas de ar. 3. Escoamento subsônico. 4. Aerodinâmica. I. Silva, Luís Fernando Figueira da. II. Ferreira, Sandro Barros. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. VI. Título.

CDD: 621

Agradecimentos

Ao Professor Luís Fernando F. da Silva e ao Dr. Sandro Barros Ferreira pela dedicada orientação no desenvolvimento desta dissertação e pelo apoio durante o curso de mestrado.

A minha família, em especial a minha mãe Crescencia e meu irmão Juan Luis pelo apoio incondicional fornecido durante este período fora de casa.

A EMBRAER pelo suporte fornecido durante o desenvolvimento deste trabalho.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio, em especial à Professora Angela O. Nieckele, pelos conhecimentos e conselhos fornecidos.

Ao pessoal da empresa Engineering Simulation and Scientific Software Ltda., ESSS, pela geração das malhas computacionais utilizadas neste trabalho.

A todos os colegas, em especial a Letícia Hime pela ajuda fornecida na parte inicial do trabalho.

A todos os amigos do mestrado pelos gratos momentos compartilhados.

A CNPq, FAPESP e à PUC-Rio pela ajuda financeira recebida durante o curso.

Resumo

Celis Pérez, César. Entradas de Ar Submersas para Aeronaves: Estudo Numérico da Melhoria de Desempenho Obtida pelo Uso de Gerador de Vórtices. Rio de Janeiro, 2006, 168p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Entradas de ar submersas são utilizadas em diversos sistemas de uma aeronave, tais como motor, ar-condicionado, ventilação e turbinas auxiliares. Neste trabalho visa-se estudar, através de simulações numéricas, a influência do uso de um gerador de vórtices sobre a espessura da camada limite a montante de uma entrada de ar submersa, com o intuito de reduzi-la e, assim, aumentar o desempenho deste tipo de entrada. O escoamento em uma entrada NACA convencional é analisado numericamente e seus resultados são tomados como referência para comparações subsequentes. Em seguida, o gerador de vórtices é projetado e acoplado à entrada NACA convencional. Uma análise paramétrica numérica da influência da posição horizontal, do ângulo de ataque e da área do gerador de vórtices sobre a estrutura do escoamento e sobre os parâmetros de desempenho da entrada de ar é apresentada. Finalmente, um mastro de suporte do gerador de vórtices é projetado e são realizadas simulações do conjunto entrada NACA com gerador de vórtices e mastro para três ângulos de derrapagem do mastro. Os resultados mostram que a presença do gerador de vórtices livre leva a reduções consideráveis da espessura da camada limite e, consequentemente, a ganhos significativos nos parâmetros de desempenho da entrada de ar. Para o caso da entrada NACA com gerador de vórtices livre, os ganhos obtidos em relação à entrada NACA convencional, em termos de eficiência e de vazão mássica, são de até 58% e 21%, respectivamente. No caso da entrada NACA com gerador de vórtices e mastro, o melhor resultado exibe ganhos da ordem de 53%, em termos de eficiência, e de 19%, em termos da vazão mássica que ingressa na entrada de ar. A contribuição do arrasto provocado pela presença do gerador de vórtices com mastro no arrasto total do conjunto entrada *NACA* com gerador de vórtices e mastro é pequena, menor que 10%.

Palavras chave

Tomadas de ar, escoamento subsônico, aerodinâmica.

Abstract

Celis Pérez, César. Submerged Air Inlets for Aircrafts: Numerical Study of the Performance Improvement Obtained by the Use of a Vortex Generator. Rio de Janeiro, 2006, 168p. M.Sc. Dissertation – Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

Submerged air inlets are used for several systems of an aircraft, such as engine, air conditioning, ventilation, and auxiliary turbines. This work intends, through numerical simulations, to study the influence of the use of a vortex generator upon the boundary layer that develops upstream of a submerged air intake, with the aim of decreasing its thickness and, thus, to increase the inlet performance. The flow in a conventional NACA inlet is analyzed numerically and its results are considered as a reference for subsequent comparisons. Then, the vortex generator is designed and assembled to the conventional NACA inlet. A parametric analysis of the influence of the horizontal position, the angle of attack, and the area of the vortex generator on the flow field structure and on the performance parameters of the air inlet is presented. Finally, a support mast of the vortex generator is designed, and simulations are performed for the ensemble NACA inlet with vortex generator and mast for three sideslip angles of the support. The results show that the presence of the vortex generator is responsible for considerable reductions of the boundary layer thickness and, consequently, significant improvements of the performance parameters of the NACA inlet. The improvements, relative to the conventional NACA intake, in terms of ram recovery ratio and mass flow rate, may reach of 58% and 21%, respectively, for the case of the NACA inlet with the freely standing vortex generator. For the case of the NACA inlet with the vortex generator and support, improvements of up to 53%, in terms of ram recovery ratio, and 19%, in terms of mass flow rate ingested by the intake, were obtained. The contribution of the drag induced by the presence of the vortex generator with support on the total drag of the ensemble is smaller than 10%.

Keywords

Air inlets, subsonic flow, aerodynamics.

Sumário

1	In	ıtrodı	ução	24
2	R	evisã	ăo bibliográfica	29
	2.1	Cor	nsiderações iniciais	29
	2.2	Prir	neiros trabalhos	30
	2.3	Tra	balhos recentes	34
	2.4	Pro	jeto atual das entradas NACA	39
3	F	ormu	ılação matemática	42
	3.1	Εqι	uações governantes	42
	3.2	Мо	delos de viscosidade turbulenta	47
	3.	.2.1	Modelo de Spalart e Allmaras	48
	3.	2.2	Modelos k - ε	50
	3.3	Tra	tamento da região da parede	52
	3.	.3.1	Considerações iniciais	52
	3.	3.2	Funções de parede	55
	3.4	Cor	ndições de contorno	58
	3.5	Mé	todo numérico	60
4	С	onfig	jurações estudadas	62
	4.1	Des	scrição das configurações	62
	4	.1.1	NACA convencional	62
	4	1.2	Gerador de vórtices	63
	4	1.3	NACA com gerador de vórtices e mastro	66
	4.2	Gei	ação de malha	67
	4.3	Apl	icação das condições de contorno às diferentes confiç	gurações
	estu	dada	as	74
5	R	esuli	ados e discussão	76

5.1	Ent	rada NACA convencional	78
5	.1.1	Estrutura do escoamento	78
5.1.2		Influência do modelo de turbulência sobre a camada limit	e 82
5.1.3		Influência da pressão estática na saída do duto	89
5.1.4 Influência do nível de refinamento da malha computacional			al
u	tiliza	da	91
5.2	Gei	rador de vórtices (GV) isolado	97
5.3	Ant	eprojeto do conjunto entrada NACA e gerador de vórtices	100
5.4	NA	CA com gerador de vórtices livre	102
5	.4.1	Estrutura do escoamento	102
5	.4.2	Influência do nível de refinamento da malha computacion	al
u	tiliza	da	107
5	.4.3	Influência da posição longitudinal do gerador de vórtices	110
5	.4.4	Influência do ângulo de ataque do gerador de vórtices	119
5	.4.5	Influência da área do gerador de vórtices	127
5.5 Anteprojeto do conjunto entrada NACA com gerador de vórtices e			es e
mas	tro		133
5.6	NA	CA com gerador de vórtices e mastro	136
5	.6.1	Estrutura do escoamento	136
5	.6.2	Influência do ângulo de derrapagem do mastro	141
5.7	Sur	nário dos resultados apresentados	147
С	oncli	usões e perspectivas	152
Referências bibliográficas 156			156
Α.	2	liana	450
Α	Apêndices 159		

Lista de figuras

Figura 1-1. Entrada de ar tipo <i>NACA</i> . ¹	24
Figura 1-2. Entrada de ar tipo scoop. ¹	25
Figura 2-1. Detalhe da entrada NACA com defletores.8	31
Figura 2-2. Representação esquemática dos defletores de	
escoamento.9	32
Figura 2-3. Representação esquemática do escoamento rotacional	ao
longo de uma entrada <i>NACA</i> . ⁹	32
Figura 2-4. Representação esquemática de uma entrada <i>NACA</i> modificada. 12	34
Figura 2-5. Estrutura do escoamento a jusante o gerador de vórtice	
doublet e wishbone (a) e (b) Doublet VG em camada lin	
laminar e turbulenta, respectivamente; (c) e (d) <i>Wishboi</i>	
VG em camada limite laminar e turbulenta,	,,
respectivamente.14	35
Figura 2-6. Projeto conceitual do <i>BWB</i> . 15	36
Figura 2-7. Entrada <i>NACA</i> com gerador de vórtices. ¹	37
Figura 2-8. Entrada de ar submersa genérica. 16	38
Figura 2-9. Parâmetros usados na otimização da entrada. ¹⁷	39
Figura 2-10. Representação esquemática em corte transversal de u	ıma
entrada NACA convencional.	40
Figura 3-1. Lei da parede universal – Camada limite turbulenta sob	re
superfícies lisas. ²⁹	53
Figura 4-1. Geometria da entrada NACA convencional (dimensões	em
mm).	62
Figura 4-2. Exemplo de formação de vórtices sobre uma asa delta.	³¹ 64
Figura 4-3. Coeficiente de sustentação em função do alongamento.	.31 64
Figura 4-4. Vista em três dimensões do gerador de vórtices.	65
Figura 4-5. Configuração geométrica do gerador de vórtices	
(dimensões em mm).	65

Figura 4-6. Maina superficial da entrada <i>NACA</i> convencional.	67
Figura 4-7. Detalhe da malha da entrada <i>NACA</i> convencional – Plano	
de simetria.	68
Figura 4-8. Qualidade da malha da entrada NACA convencional:	
histograma de distribuição do número de elementos como	
função do alongamento e do ângulo.	70
Figura 4-9. Malha superficial do gerador de vórtices isolado.	71
Figura 4-10. Malha do gerador de vórtices isolado — Plano de simetria.	71
Figura 4-11. Malha superficial da entrada NACA com gerador de	
vórtices livre.	71
Figura 4-12. Detalhe da malha da entrada NACA com GV livre – Plano	
de simetria.	72
Figura 4-13. Qualidade da malha da entrada NACA com GV livre:	
histograma de distribuição do número de elementos como	
função do alongamento e do ângulo.	73
Figura 4-14. Malha superficial da entrada NACA com gerador de	
vórtices e mastro.	74
Figura 4-15. Aplicação das condições de contorno à configuração de	
entrada NACA com gerador de vórtices livre.	75
Figura 5-1. Linhas de corrente coloridas pela componente longitudinal	
da velocidade (m/s) – Caso N1A-1.	79
Figura 5-2. Detalhe da Figura 5 1 – Caso N1A-1.	79
Figura 5-3. Componente longitudinal da velocidade (m/s) — Caso N1A-	
1 (dimensões em mm).	80
Figura 5-4. Componente longitudinal da velocidade (m/s) – Caso N1A-	
1, plano de simetria (dimensões em mm).	80
Figura 5-5. Componente longitudinal da vorticidade (1/s) – Caso N1A-	
1 (dimensões em mm).	81
Figura 5-6. Coeficiente de pressão, C _P - Caso N1A-1, plano de	
simetria (dimensões em mm).	82
Figura 5-7. Coeficiente de pressão, C _P - Caso N1A-1, plano da	
garganta da NACA (dimensões em mm).	82
Figura 5-8. Evolução da camada limite - 1m a montante do início da	

rampa inclinada, coordenadas internas.	84
Figura 5-9. Evolução da componente longitudinal da velocidade na	
camada limite - 1m a montante do início da rampa	
inclinada.	85
Figura 5-10. Evolução da camada limite - Início da rampa inclinada,	
coordenadas internas.	86
Figura 5-11. Evolução da componente longitudinal da velocidade na	
camada limite - Início da rampa inclinada.	87
Figura 5-12. Evolução da camada limite - 1m a montante do início da	
rampa inclinada, coordenadas internas.	90
Figura 5-13. Evolução da camada limite - Início da rampa inclinada,	
coordenadas internas.	90
Figura 5-14. Malha no plano de simetria – Caso N1A-1	92
Figura 5-15. Malha no plano de simetria – Caso N1B.	93
Figura 5-16. Malha no plano de simetria – Caso N1C.	93
Figura 5-17. Coeficiente de pressão, C _P – Caso N1B, Plano da	
garganta da NACA (dimensões em mm).	94
Figura 5-18. Coeficiente de pressão, C _P – Caso N1C, Plano da	
garganta da NACA (dimensões em mm).	94
Figura 5-19. Valor de y ⁺ - Caso N1A-1.	95
Figura 5-20. Valor de y ⁺ - Caso N1B.	95
Figura 5-21. Valor de y ⁺ - Caso N1C.	95
Figura 5-22. Coeficiente de pressão, C_P – GV com ângulo de ataque	
de 0° (dimensões em mm).	97
Figura 5-23. Coeficiente de pressão, C_P – GV com ângulo de ataque	
de 15° (dimensões em mm).	98
Figura 5-24. Coeficiente de pressão, C _P – GV com ângulo de ataque	
de 30° (dimensões em mm).	98
Figura 5-25. Intensidade dos vórtices em função do ângulo de ataque	
do GV.	99
Figura 5-26. Coeficiente de sustentação, C _L , do gerador de vórtices.	99
Figura 5-27. Polar de arrasto do GV, C _L vs. C _D .	100
Figura 5-28. Iso-superfície da componente longitudinal da vorticidade	

$-$ GV com α = 15°.	101
Figura 5-29. Linhas de correntes coloridas pelo valor da componente	
longitudinal da velocidade (m/s) – Caso NGVA.	103
Figura 5-30. Componente longitudinal da velocidade (m/s) – Caso	
NGVA (dimensões em mm).	104
Figura 5-31. Componente longitudinal da velocidade (m/s) - Caso	
NGVA, plano de simetria (dimensões em mm).	105
Figura 5-32. Componente longitudinal da vorticidade (1/s) – Caso	
NGVA (dimensões em mm).	106
Figura 5-33. Coeficiente de pressão, C _P – Caso NGVA, plano de	
simetria (dimensões em mm).	106
Figura 5-34. Coeficiente de pressão, C _P – Caso NGVA, plano da	
garganta (dimensões em mm).	107
Figura 5-35. Comparação de malha - Casos NGVA e NGVA-1, plano	
situado a 0,2 m a jusante do GV.	108
Figura 5-36. Contornos de volume de elementos (m³) - Caso NGVA	
(dimensões em mm).	109
Figura 5-37. Contornos de volume de elementos (m^3) - Caso NGVA-1	
(dimensões em mm).	109
Figura 5-38. Comparação dos contornos de vorticidade $(1/s)$ — Casos	
NGVA e NGVA-1, plano situado a 0,5 m a montante da	
entrada NACA.	110
Figura 5-39. Linhas de correntes pela componente longitudinal da	
velocidade (m/s) – Caso NGVB.	111
Figura 5-40. Linhas de correntes pela componente longitudinal da	
velocidade (m/s) – Caso NGVC.	112
Figura 5-41. Componente longitudinal da velocidade (m/s) – Caso	
NGVB (dimensões em mm).	113
Figura 5-42. Componente longitudinal da velocidade (m/s) – Caso	
NGVC (dimensões em mm).	113
Figura 5-43. Componente longitudinal da velocidade (m/s) - Caso	
NGVB, plano de simetria (dimensões em mm).	114
Figura 5-44. Componente longitudinal da velocidade (m/s) - Caso	

NGVC, plano de simetria (dimensões em mm).	114
Figura 5-45. Componente longitudinal da vorticidade (1/s) – Caso	
NGVB (dimensões em mm).	115
Figura 5-46. Componente longitudinal da vorticidade (1/s) – Caso	
NGVC (dimensões em mm).	116
Figura 5-47. Coeficiente de pressão, C _P - Caso NGVB, plano da	
garganta da NACA (dimensões em mm).	116
Figura 5-48. Coeficiente de pressão, C _P - Caso NGVC, plano da	
garganta da NACA (dimensões em mm).	117
Figura 5-49. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-25 (dimensões em mm).	120
Figura 5-50. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-35 (dimensões em mm).	120
Figura 5-51. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-25, plano de simetria (dimensões em mm).	121
Figura 5-52. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-35, plano de simetria (dimensões em mm).	122
Figura 5-53. Componente longitudinal da vorticidade (1/s) – Caso	
NGVA-25 (dimensões em mm).	123
Figura 5-54. Componente longitudinal da vorticidade (1/s) – Caso	
NGVA-35 (dimensões em mm).	123
Figura 5-55. Coeficiente de pressão, C _P – Caso NGVA-25, plano de	
simetria (dimensões em mm).	124
Figura 5-56. Coeficiente de pressão, C _P – Caso NGVA-35, plano de	
simetria (dimensões em mm).	124
Figura 5-57. Coeficiente de pressão, C _P – Caso NGVA-25, plano da	
garganta (dimensões em mm).	125
Figura 5-58. Coeficiente de pressão, C _P – Caso NGVA-35, plano da	
garganta (dimensões em mm).	125
Figura 5-59. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-1,5A (dimensões em mm).	128
Figura 5-60. Componente longitudinal da velocidade (m/s) – Caso	
NGVA-2,0A (dimensões em mm).	128

Figura 5-61. Componente longitudinal da velocidade (m/s) – Ca	SO
NGVA-1,5A, plano de simetria (dimensões em mm).	129
Figura 5-62. Componente longitudinal da velocidade (m/s) – Cas	so
NGVA-2,0A, plano de simetria (dimensões em mm).	129
Figura 5-63. Componente longitudinal da vorticidade (1/s) – Cas	30
NGVA-1,5A (dimensões em mm).	130
Figura 5-64. Componente longitudinal da vorticidade (1/s) – Cas	30
NGVA-2,0A (dimensões em mm).	131
Figura 5-65. Coeficiente de pressão, C _P – Caso NGVA-1,5A, pla	ano da
garganta (dimensões em mm).	131
Figura 5-66. Coeficiente de pressão, C _P – Caso NGVA-2,0A, pla	ano da
garganta (dimensões em mm).	132
Figura 5-67. Vista em três dimensões do mastro.	135
Figura 5-68. Características geométricas do mastro (dimensões	em
mm).	135
Figura 5-69. Linhas de correntes coloridas pela componente	
longitudinal da velocidade (m/s) – Caso NGVAM-0.	137
Figura 5-70. Componente longitudinal da velocidade (m/s) – Ca	so
NGVAM-0 (dimensões em mm).	138
Figura 5-71. Componente longitudinal da velocidade (m/s) – Ca	so
NGVAM-0, plano de simetria (dimensões em mm).	138
Figura 5-72. Componente longitudinal da vorticidade (1/s) – Cas	30
NGVAM-0 (dimensões em mm).	139
Figura 5-73. Coeficiente de pressão, C_P – Caso NGVAM-0, plan	o de
simetria (dimensões em mm).	140
Figura 5-74. Coeficiente de pressão, C_{P} - Caso NGVAM-0, plane	o da
garganta da <i>NACA</i> (dimensões em mm).	140
Figura 5-75. Componente longitudinal da velocidade (m/s) – Cas	so
NGVAM-5 (dimensões em mm).	142
Figura 5-76. Componente longitudinal da velocidade (m/s) – Cas	so
NGVAM-10 (dimensões em mm).	142
Figura 5-77. Componente longitudinal da velocidade (m/s) - Cas	30
NGVAM-5, plano de simetria (dimensões em mm).	143

rigura 5-76. Componente longitudinal da velocidade (m/s) - Caso	
NGVAM-10, plano de simetria (dimensões em mm).	143
Figura 5-79. Componente longitudinal da vorticidade (1/s) – Caso	
NGVAM-5 (dimensões em mm).	144
Figura 5-80. Componente longitudinal da vorticidade (1/s) – Caso	
NGVAM-10 (dimensões em mm).	144
Figura 5-81. Coeficiente de pressão, C _P - Caso NGVAM-5, plano da	
garganta da NACA (dimensões em mm).	145
Figura 5-82. Coeficiente de pressão, C_{P} - Caso NGVAM-10, plano da	
garganta da NACA (dimensões em mm).	145
Figura 5-83. Influência da posição horizontal do GV sobre os	
parâmetros de desempenho da entrada NACA.	148
Figura 5-84. Influência do ângulo de ataque (α) do GV sobre os	
parâmetros de desempenho da entrada NACA.	149
Figura 5-85. Influência da área do GV sobre os parâmetros de	
desempenho da entrada NACA.	150
Figura 5-86. Influência do ângulo de derrapagem do mastro sobre os	
parâmetros de desempenho da entrada NACA.	151
Figura 8-1. Resíduos – Caso N1A-1.	159
Figura 8-2. Resíduos – Caso N2A.	160
Figura 8-3. Resíduos – Caso N2B-1.	160
Figura 8-4. Resíduos – Caso N1A-2.	161
Figura 8-5. Resíduos – Caso N2B-2.	161
Figura 8-6. Resíduos – Caso N1B.	162
Figura 8-7. Resíduos – Caso N1C.	162
Figura 8-8. Resíduos – Caso NGVA.	163
Figura 8-9. Resíduos – Caso NGVA-1.	163
Figura 8-10. Resíduos – Caso NGVB.	164
Figura 8-11. Resíduos – Caso NGVC.	164
Figura 8-12. Resíduos – Caso NGVA-25.	165
Figura 8-13. Resíduos – Caso NGVA-35.	165
Figura 8-14. Resíduos – Caso NGVA-1,5A.	166
Figura 8-15. Resíduos – Caso NGVA-2,0A.	166

Figura 8-16. Resíduos – Caso NGVAM-0.	167
Figura 8-17. Resíduos – Caso NGVAM-5.	167
Figura 8-18. Resíduos – Caso NGVAM-10.	168

Lista de tabelas

Tabela 3-1. Termos de produção e destruição do modelo <i>k-ε</i>	
realizável. ²⁶	51
Tabela 3-2. Resumo das condições de contorno.	59
Tabela 4-1. Parâmetros característicos da malha da entrada NACA	
convencional.	68
Tabela 4-2. Parâmetros característicos da malha da entrada NACA	
com GV livre.	72
Tabela 5-1. Condições de escoamento não perturbado.	76
Tabela 5-2. Sumário dos casos e configurações estudadas.	77
Tabela 5-3. Parâmetros de desempenho – Influência da escolha do	
modelo de turbulência.	88
Tabela 5-4. Parâmetros de desempenho – Influência da pressão	
estática na saída do duto.	91
Tabela 5-5. Parâmetros de desempenho da entrada NACA.	96
Tabela 5-6. Parâmetros de desempenho – Influência da posição	
longitudinal do GV	118
Tabela 5-7. Parâmetros de desempenho – Influência do ângulo de	
ataque do GV.	126
Tabela 5-8. Parâmetros de desempenho – Influência da área do GV.	132
Tabela 5-9. Parâmetros de desempenho – Influência do ângulo de	
derrapagem do mastro	146

Nomenclatura

Área A Velocidade do som CCorda na raiz do gerador de vórtices Coeficiente de arrasto do gerador de vórtices C_{D} C_{Dfl} Coeficiente de arrasto total da entrada de ar C_{L} Coeficiente de sustentação do gerador de vórtices Coeficiente de pressão C_{P} C_{v} Calor específico a volume constante. DArrasto total DH Distância horizontal d_H Diâmetro hidráulico Energia total por unidade de volume e Energia interna especifica e_i Entalpia total específica HS Envergadura do gerador de vórtices Intensidade da turbulência Ι Energia cinética média de turbulência k Energia cinética da turbulência no ponto P k_P Comprimento característico do movimento turbulento L_C Número de Mach M $M_{\rm w}$ Massa molecular do fluido

Vazão mássica

n	Coordenada local normal à parede
p	Pressão estática
p_{op}	Pressão de operação
p_t	Pressão total
p_s	Pressão estática na saída do duto da entrada de ar
$\Pr_{t_{\phi}}$	Número de Prandtl em regime turbulento
\vec{q}	Vetor fluxo de calor.
R	Constante universal dos gases
S	Taxa de deformação média do escoamento
Sct_{ϕ}	Número de Schmidt
T	Temperatura
t	Tempo
U_P	Velocidade média do fluido no ponto P
\vec{u}	Vetor velocidade
u^{+}	Escala viscosa de velocidade
V	Velocidade
V_C	Velocidade característica do movimento turbulento
$\widetilde{\mathcal{V}}$	Viscosidade turbulenta modificada
y^{+}	Escala viscosa de comprimento
y_P	Distância do ponto P à parede
${\cal Y}_{v}$	Espessura da subcamada viscosa
Letras gregas	
α	Ângulo de ataque do gerador de vórtices
β	Ângulo de derrapagem do mastro
Γ	Difusividade

γ	Razão de calores específicos
δ_{ij}	Símbolo de Kronecker
ε	Taxa de dissipação da energia cinética do movimento
η_{fl}	Eficiência de recuperação de pressão dinâmica
κ	Constante de von Kármán
Λ	Alongamento do gerador de vórtices
μ_l	Viscosidade molecular ou absoluta
μ_t	Viscosidade turbulenta dinâmica
u_{τ}	Velocidade de atrito
\mathcal{U}_t	Viscosidade turbulenta cinemática
ρ	Densidade
$\tau_{\scriptscriptstyle w}$	Tensão de cisalhamento na parede
= T	Tensor de tensões viscosas
ϕ	Variável genérica
$\overline{\phi}$	Média no tempo da variável genérica
$oldsymbol{\phi}_f$	Variável genérica na face de um elemento
Ω	Tensor vorticidade
Índices	
TH	Plano da garganta da entrada de ar
0	Condições de escoamento não perturbado